Ad

Anzeige

Zurück zur Übersicht

19.06.2018

Luftreiniger und Schmutzpumpe: der indische Monsun

Das weltweit größte Wetterphänomen reinigt die Luft effizient von Schadstoffen, verteilt sie aber auch über den gesamten Globus.

Es ist jedes Jahr das gleiche Phänomen. Während der Trockenzeit im Winter bildet sich durch die Verbrennung von fossilen Brennstoffen und von Biomasse über Südasien eine riesige Schmutzwolke: die Atmospheric Brown Cloud. Warum sie wieder verschwindet, sobald im Frühjahr die Regenzeit einsetzt, hat nun ein internationales Wissenschaftlerteam unter Federführung des Max-Planck-Instituts für Chemie herausgefunden. Demnach stärken Aufwinde, Gewitter und chemische Reaktionen die Selbstreinigungskraft der Atmosphäre, sodass Luftschadstoffe effizient aus der Luft gewaschen werden können. Die Schadstoffe jedoch, die nicht beseitigt werden, steigen getrieben durch den Monsun bis in die obere Troposphäre und verteilen sich dann weltweit.

Kein Wetterphänomen prägt Südasien so stark wie der Monsun: Die gigantische Luftströmung führt im Winter zu Trockenheit und Dürre, bringt im Sommer aber große Niederschlagsmengen. Der Monsun entsteht, da sich Luftmassen über dem Indischen Subkontinent in den Sommermonaten sehr stark aufheizen, und die warme Luft aufsteigt. Dadurch wird feuchte Ozeanluft angesaugt und strömt über das Land in Richtung Himalaya. Über der Region bilden sich riesige Wolken, aus denen es über Monate hinweg regnen kann, was die Wasserversorgung und die Ernten sichert.

Atmosphärenforscher vermuten schon seit längerem, dass die aufsteigenden Luftmassen zudem verschmutzte Luft hoch in die Atmosphäre transportieren, und zwar über die Regenwolken hinaus. „Nach unserer Vorstellung gelangen Schadstoffe und Schmutzpartikel durch die Konvektion in einen Antizyklon, einen riesigen Windwirbel, der sich oberhalb der Wolkenebene über Südasien bildet,“ so Jos Lelieveld, Direktor am Max-Planck-Institut für Chemie. Geografisch zählen die Länder Bhutan, Nepal, Myanmar, Bangladesch, Tibet, Indien, Sri Lanka, Pakistan und Afghanistan zu Südasien. In dieser Region sind die Stickoxid- und Schwefeldioxidemissionen aus der Verbrennung von Kohle und anderen fossilen Energieträgern im letzten Jahrzehnt um fünfzig Prozent gestiegen. Aber auch andere Quellen, insbesondere die Verbrennung von Biomasse durch die vielen Menschen in der Region, nähren die Schmutzwolke.

Der Monsun transportiert Luftschadstoffe und beseitigt sie

Den Nachweis, dass der südasiatische Monsun tatsächlich Schadstoffe über die Wolkenschicht in große Höhen transportiert, lieferte nun eine aufwendige Expedition mit dem Forschungsflugzeug HALO: Im Jahr 2015 startete das Max-Planck-Institut für Chemie mit Kollegen des Forschungszentrums Jülich, des Karlsruher Instituts für Technologie und des Deutschen Zentrums für Luft- und Raumfahrt (DLR) die Mission „Oxidation Mechanism Observations“ (OMO). „Unsere Forschungsflüge zeigten nicht zuletzt, dass die Atmosphäre durch den Monsun effizient von Schadstoffen gereinigt wird“, so der Expeditionsleiter Lelieveld.

Die Studie des Wissenschaftlerteams offenbart aber auch die Janusköpfigkeit des Monsuns, die wie die römische Gottheit zwei Gesichter hat: Ein Großteil der aus Südasien stammenden Schadstoffe, die bis über die Wolken des Monsuns befördert werden, wird durch die Selbstreinigungskraft im Antizyklon nicht beseitigt. Sie reichern sich vielmehr an und verteilen sich rund um den Globus. So gelangen beispielsweise nahezu zehn Prozent des Schwefeldioxids aus Südasien in die Stratosphäre, was wiederum Auswirkungen auf das Klima und die Ozonschicht hat. Der Monsun ist mithin nicht nur eine Art effizienter Waschmaschine für Schadstoffe, sondern trägt gleichzeitig auch zur weltweiten Luftverschmutzung bei.

HALO offenbart die Quellen der Luftverschmutzung und die Abbauprozesse

Die Erkenntnisse gewannen die Wissenschaftler aus Messungen in Ausläufern des Antizyklons: Mit dem Forschungsflugzeug HALO flogen sie im Juli und August zwischen dem östlichen Mittelmeer und dem Indischen Ozean bis zu 15 Kilometer hoch in den Monsunwirbel hinein und analysierten die Luftzusammensetzung. Sie kreuzten dabei auch Regionen über dem Nahen Osten, dem Mittelmeer und Nordafrika, um die Ausdehnung des Phänomens zu untersuchen.

Während der Messflüge bestimmten sie zahlreiche chemische Verbindungen, um Aufschluss über die Quellen der Luftverschmutzung und die chemischen Vorgänge in der Atmosphäre zu erhalten: Schwefel- und Stickoxide, Ozon, Aerosolpartikel, chlorhaltige Moleküle, Kohlenwasserstoffe und deren Abbauprodukte. 

Mehr Kohlenmonoxid und Schwefeldioxid, aber auch mehr Hydroxyl

Ihre Messflüge ergaben, dass beispielsweise die Konzentrationen an Kohlenmonoxid und Schwefeldioxid innerhalb des Antizyklons im Vergleich zu außerhalb deutlich erhöht waren. „Die großen Schwefeldioxidmengen stammen aus Verbrennungsprozessen durch menschliche Aktivitäten und liegen um vieles höher als natürliche Hintergrundkonzentrationen“, so der Atmosphärenforscher Hans Schlager des DLR. Das wiederum bedeutet, dass ein wesentlicher Teil der Luftverschmutzung in Höhen bis zu 15 Kilometern transportiert wird. Zudem konnten die Forscher nachweisen, dass Indien eine bedeutende Schadstoffquelle ist. Zuvor wurde vermutet, dass ein großer Teil der Emissionen aus China stammen könnte, da das Einflussgebiet des Monsuns bis nach Ostasien reicht.

„Wir haben außerdem die Hydroxyl-Konzentration analysiert und fanden innerhalb des Antizyklons deutlich höhere Konzentrationen als außerhalb“, so der Max-Planck-Forscher Hartwig Harder, der während der gesamten Expedition dabei war. Das Hydroxyl-Molekül (OH) ist besser als Waschmittel der Atmosphäre bekannt, da es ein sehr reaktives Radikal ist und Schadstoffe effizient oxidiert. Dies hat chemisch zwei Effekte: Zum einen ändern sich ihre Löslichkeit und damit auch ihr Vermögen, sich in bereits bestehenden Schwebepartikeln in der Luft abzulagern, wodurch sie durch Niederschlag leichter aus der Luft ausgewaschen werden. Zum anderen können sich die oxidierten Moleküle aneinanderlagern und so neue Aerosolpartikel bilden. Weil sich der Antizyklon weit ausdehnt und die Partikel verteilt, kann sich dieser Effekt auf das Klima weltweit auswirken.

Mehr Atmosphären-Waschmittel durch Blitze

Primär entsteht das Atmosphären-Waschmittel, wenn Ozon und Wasser durch Sonnenlicht gespalten werden. Nachdem das Radikal mit Schadstoffen reagiert hat, geht es normalerweise verloren. Sind jedoch Stickoxide vorhanden, wird das Radikal recycelt und kann wiederholt reinigen, erklärt der Atmosphärenchemiker Andreas Hofzumahaus vom Forschungszentrum Jülich. Stickoxide entstehen nicht nur bei der Verbrennung von Diesel, sondern auch durch Blitze in der Atmosphäre. Da es die während der Monsungewitter reichlich gibt, bleibt die Selbstreinigungskraft in 15 Kilometer Höhe trotz der Luftverschmutzung erhalten. Den Wissenschaftlern zufolge wird sogar viel mehr OH recycelt als sich primär bildet, denn die OH-Konzentration steigt durch die Blitzaktivität auf das Zwei- bis Dreifache.

Das heißt also, dass das Klimaphänomen Monsun nicht nur Schadstoffe hoch in die Atmosphäre pumpt, sondern gleichzeitig einen Reinigungsmechanismus bereitstellt, um einen Teil der Schadstoffe wieder zu entfernen.

Bestätigt wurde diese Erklärung durch die Ergebnisse eines etablierten numerischen Modellsystems, das die chemischen Prozesse in der Atmosphäre global abbildet. Anhand dieses Modells lassen sich unter anderem die Konzentrationen einzelner chemischer Verbindungen wie Kohlenmonoxid, Schwefeldioxid, Kohlenwasserstoffe, Stickoxide und auch die des OH-Radikals ermitteln. Letztere sinkt nämlich um einen Faktor zwei bis drei ab, sobald die Wissenschaftler die durch Blitze entstehenden Stickoxide im Modell nicht berücksichtigten.

Da anzunehmen ist, dass die Schadstoffemissionen in der Region in den nächsten Jahren weiter ansteigen, ist es für die Forscher um Jos Lelieveld von Interesse, wie sich das Gesicht des janusköpfigen südasiatischen Monsuns weiterentwickelt: Bleiben Reinigungs- und Transportmechanismus gleichzeitig bestehen oder kippen sie in die eine oder andere Richtung.

  • J. Lelieveld, E. Bourtsoukidis, C. Brühl, H. Fischer, H. Fuchs, H. Harder, A. Hofzumahaus, F. Holland, D. Marno, M. Neumaier, A. Pozzer, H. Schlager, J. Williams, A. Zahn, H. Ziereis. The South Asian monsoon – pollution pump and purifier. DOI: 10.1126/science.aar2501

Zurück zur Übersicht

Quelle   Max-Planck Institut für Chemie 2018

Das könnte sie auch interessieren