‹ Zurück zur Übersicht
Depositphotos | sompong_tom | Technological innovation impacts future farming.

© Depositphotos | sompong_tom | Technological innovation impacts future farming.

From artificial meat to fine-tuning photosynthesis: Food System Innovation – and how to get there

Food production has always shaped the lives of humans and the surface of the Earth. Be it plough or refrigerator, time and again innovations have transformed the ways we grow, process, and consume food over the last millennia. Today, with almost 40 per cent of all land on Earth used for food production, the food system massively impacts climate and environment – from nitrogen flows to water use, from biodiversity to greenhouse gas emissions.

In a new study published in the journal NatureFOOD, an international team of researchers has now assessed and categorised key innovations with a potential to transform the food system, from artificial meat or seafood to biofortified crops or improved climate forecasts – and established what is most needed to make them succeed.

From the invention of the wheel to artificial fertilisers, innovations have always shaped the food system. And agriculture, in turn, has shaped our planet. Of late, however, not to the better, states Alexander Popp, one of the study’s authors and head of the land-use group at the Potsdam Institute for Climate Impact Research (PIK): “Nitrogen has boosted yields and lifted millions out of hunger, but if too much of it drains into nature, whole ecosystems can collapse. So, in light of an expanding world population, huge and rising dietary and nutritional needs, and rapidly shrinking space to remain within safe planetary boundaries, we need to identify innovations that can transform the food system, making it sustainable while feeding more people – and what it takes to make them fly.” In order to do that, the authors have conducted a technological review spanning three millennia. From past successes like the plough or the greenhouse to innovations that are not yet rolled out. The focus is the latter as the researchers aim to answer the question what society should put her cards on.

“We regard transformation as a process of systemic change. This means we not only analyse technologies, but also values, policies and governance. With such lenses we have assessed what innovations there are, globally, how to categorise them, and how ready they are”, Mario Herrero from the Commonwealth Scientific and Industrial Research Organisation in Australia explains. The ten categories identified by the researchers include food processing, gene technology, digital and even cellular agriculture. The innovations as such, in turn, are very broad, ranging from substitutes for livestock or seafood to biofortified crops or improved climate forecasts. “Amongst the things currently sprouting in the global incubators are very advanced elements like insects for food or meat substitutes, but even high-impact basic research like fine-tuning photosynthesis”, Herrero lays out. Researchers are currently looking to boost light harvesting in photosynthesis to improve biomass yield.

The right climate for behavioural change

“Developing a new technology is yet not enough to kick-off a disruptive change in the food system. Innovations also need the right policy conditions and social acceptance to unfold. Plant-based meat and milk substitutes are a great example. The recipes for seitan, soymilk or tofu were out there for long times. But only in recent years, with rising consumer awareness for environmental issues, health, and animal welfare, we have the right climate for behavioural change – and companies are seeing the business opportunities: They are ready to refine the technology, making the products tastier and cheaper. And the final boost could come when environmental pollution gets priced, revealing the true costs of a beef burger versus a pea patty. Plant-based meat can become one of the largest transformations in our food system, and it might take off now.”

Johan Rockström, PIK director and co-author of the study, summarises: “The Paris Agreement’s stay well below two-degree target together with UNs 2030 goals of eradicating hunger, gives us the clear direction of where we are going. This research now shows us not only how to get there, but also provides confidence that it is indeed possible to succeed. We can feed humanity within planetary boundaries: what we need is to prepare the ground by implementing the right policies for sustainable innovators and actors that can scale change in the entire food industry, such as carbon and nitrogen pricing and science based targets for sustainable food. Thus we can kick-start a true transformation towards a safe and just food future for all on Earth.”

Article: Herrero, M., Thornton, P., Mason-D’Croz, D., Palmer, J., Benton, T., Bodirsky, B. L., Bogard, J., Hall, A., Lee, B., Nyborg, K., Pradhan, P., Bonnett, G., Bryan, B., Campbell, B., Christensen, S., Clark, M., Cook, M., de Boer, I., Downs, C., Dizyer, K., Folberth, C., Godde, C., Gerber, J., Grundy, M., Havlik, P., Jarvis, A., King, J., Loboguerrero, A., Lopes, M., McIntyre, C., Nylor, R., Navarro, J., Obersteiner, M., Parodi, A., Peoples, M., Pikarr, A., Popp, A., Rockström, J., Robertson, M., Smith, P., Stehfest, E., Swain, S., Valin, H., van Wijk, M., van Zanten, H., Vervoort, J., West, P.: Innovation can accelerate the transition towards a sustainable food system. Nature FOOD. [DOI: 10.1038/s43016-020-0074-1]

Previous related research by PIK:

  • Ilje Pikaar, Silvio Matassa, Benjamin L. Bodirsky, Isabelle Weindl, Florian Humpenöder, Korneel Rabaey, Nico Boon, Michele Bruschi, Zhiguo Yuan, Hannah van Zanten, Mario Herrero, Willy Verstraete, Alexander Popp (2018): Decoupling Livestock from Land Use through Industrial Feed Production Pathways. Environmental Science and Technology [DOI:10.1021/acs.est.8b00216], find our press release here
  • Pikaar, Ilje, Silvio Matassa, Korneel Rabaey, Benjamin Leon Bodirsky, Alexander Popp, Mario Herrero, and Willy Verstraete. 2017. ‘Microbes and the Next Nitrogen Revolution’. Environmental Science & Technology 51 (13): 7297–7303. https://doi.org/10.1021/acs.est.7b00916.
  • Further information on PIK’s research on the Indian Monsoon Forecast is available here

Potsdam Institute for Climate Impact Research 2020

Diese Meldung teilen

‹ Zurück zur Übersicht

Das könnte Sie auch interessieren