Neue Solarzellen für den Weltraum
Perowskit- und organische Solarzellen bewähren sich auf Raketenflug im All
Nahezu alle Satelliten beziehen ihren Strom aus Solarzellen. Doch die sind schwer. Herkömmliche Hochleistungszellen liefern bis zu drei Watt pro Gramm. Perowskit- und organische Hybridzellen könnten bis zum Zehnfachen liefern. Erstmals hat nun ein Forschungsteam der Technischen Universität München (TUM) und des Deutschen Zentrums für Luft- und Raumfahrt (DLR) solche Zellen im Weltraum getestet.
Perowskit- und organische Solarzellen sind vielversprechende Kandidaten für zukünftige Generationen von Solarzellen. In den letzten Jahren haben ihre Wirkungsgrade rasch zu den konventionellen Solarzellen auf Siliziumbasis aufgeschlossen.
„Die besten Perowskit-Solarzellen erreichen derzeit Wirkungsgrade von 25 Prozent“, sagt Peter Müller-Buschbaum, Professor für funktionelle Materialien im Physik-Department der TUM. „Solche weniger als einen Mikrometer dünnen Solarzellen, aufgebracht auf ultradünnen, flexiblen Kunststofffolien, sind extrem leicht. Daher können diese Zellen eine Energieausbeute von knapp 30 Watt pro Gramm erreichen.“
Herstellung bei Raumtemperatur
Dies wird erst durch einen entscheidenden Vorteil der neuen Solarzellen möglich: Während die Herstellung von Silizium-Solarzellen sehr hohe Temperaturen und viele Prozessschritte erfordert, lassen sich Perowskit-Zellen und organische Halbleiter bei Raumtemperatur und aus einer Lösung heraus herstellen.
„Diese organischen Lösungen kann man sehr einfach verarbeiten“, sagt Erstautor Lennart Reb. „So erschließen die Technologien neue Anwendungsfelder, in denen herkömmliche Solarzellen einfach zu unhandlich oder zu schwer waren – und das reicht weit über die Raumfahrttechnik hinaus.“
Testflug ins Weltall
Auf einem Forschungsflug im Rahmen der Kampagne MAPHEUS 8 auf der European Space and Sounding Rocket Range im schwedischen Kiruna wurden je zwei verschiedene Typen von organischen und Perowskit-Solarzellen erstmals unter Weltraumbedingungen getestet. Die Rakete erreichte dabei eine Höhe von knapp 240 Kilometern.
„Mit unserem MAPHEUS-Programm haben wir die Möglichkeit, sehr zügig Experimente in die Schwerelosigkeit zu bringen und so zu vielversprechenden Forschungsergebnissen zu kommen“, sagt Professor Andreas Meyer, Koautor und Direktor des DLR-Instituts für Materialphysik im Weltraum. „Dieses Mal ging es besonders schnell: Von der ersten Idee bis zum Flug der Solarzellen während der MAPHEUS 8-Kampagne verstrich weniger als ein Jahr.“
Energieerzeugung unter besonderen Bedingungen
„Die elektrischen Messungen während des Fluges und die materialwissenschaftliche Auswertung nach Bergung der Rakete haben gezeigt, dass Perowskit- und organische Solarzellen ihr Potenzial hinsichtlich ihrer erwarteten Leistung in Umlaufbahnhöhe erreichen können“, sagt Müller-Buschbaum. „Daher haben die Messungen einen hohen wissenschaftlichen Wert.“
Auch unter diffusem Lichteinfall erzeugten die Solarzellen elektrische Energie. „Sonnenabgewandte Zellen die während des Fluges nur spärliche Beleuchtung ausschließlich von der Erde erhielten, lieferten dennoch Strom“, sagt Reb.
Aufgrund ihrer sehr viel geringeren Schichtdicke könnten die neuen Solarzellen daher auch bei schwachen Lichtverhältnissen eingesetzt werden, beispielsweise für Missionen ins äußere Sonnensystem, wo die Sonne für herkömmliche Weltraumsolarzellen zu schwach wird.
„Es wäre nicht das erste Mal“, so DLR-Materialwissenschaftler Andreas Meyer, „dass Innovationen sich zuerst als Weltraumtechnologien etablieren, bevor sie dann weltweit in anderen Bereichen angewendet werden. Ein Grund dafür sind sicherlich die sehr hohen Anforderungen, die der Weltraum an alle technischen Komponenten stellt.“
Publikationen:
Lennart K. Reb, Michael Böhmer, Benjamin Predeschly, Sebastian Grott, Christian L. Weindl, Goran I. Ivandekic, Renjun Guo, Christoph Dreißigacker, Roman Gernhäuser, Andreas Meyer, and Peter Müller-Buschbaum: Perovskite and Organic Solar Cells on a Rocket Flight. Joule (2020)