‹ Zurück zur Übersicht
Depositphotos.com | londondeposit | Vulkanausbruch

© Depositphotos.com | londondeposit | Vulkanausbruch | Aktive Vulkane setzten große Mengen Schwefeldioxid frei. Aus dem Gas bilden sich in der Atmosphäre Schwebteilchen, die Sonnenlicht reflektieren.

Plan B zur Kühlung der Erde: Geoengineering

Geoengineering oder Climate Engineering versucht, den Treibhauseffekt durch technologische Lösungen abzumildern.

Vulkane liefern die Blaupause: Bei ihren Ausbrüchen stoßen sie große Mengen Schwefeldioxid aus und kühlen so das Klima. Als ein Mittel des Geoengineerings diskutieren Fachleute daher, die Erderwärmung durch gezielte Freisetzung des Gases einzudämmen. Ob das funktionieren würde und welche Gefahren damit verbunden sind, untersucht Ulrike Niemeier vom Max-Planck-Institut für Meteorologie in Hamburg.

Der Ausbruch des Pinatubo war gewaltig. Als der philippinische Vulkan im Juni 1991 seine Kuppe absprengte, erhob sich eine gigantische Aschewolke in den Himmel. Sie tauchte die Insel Luzon mitten am Tage in Finsternis. Auf eine Fläche von der Größe Baden Württembergs, Bayerns und Hessens zusammen regneten Unmengen von Asche herab. Sie begrub Straßen und Gebäude unter einer teils meterhohen Schicht. Hunderte Menschen starben, Zehntausende verloren ihr Zuhause. Die Eruption war so stark, dass Asche und Gase bis in die Stratosphäre gerissen wurden, dreimal so hoch, wie Verkehrsflugzeuge fliegen. Mehrere Stunden lang bebte der Berg. In dieser Zeit spuckte er acht Millionen Tonnen Schwefeldioxid-Gas aus. In wenigen Tagen verteilte sich das Gas mit den weiträumigen Luftströmungen in der Stratosphäre über die gesamte Nordhalbkugel. Und das führte zu einem interessanten Phänomen: Auf der Erde wurde es kühler.

Die Ursache dieses Kühleffekts ist schon lange bekannt. Das Schwefeldioxid reagiert in der Atmosphäre mit der Luftfeuchtigkeit zu Schwefelsäure, aus der sich kleine Schwefelsalz-Partikel bilden, sogenannte Sulfatpartikel. Diese schweben für eine gewisse Zeit in der Luft und reflektieren einen Teil der Sonnenstrahlung, die auf die Erde trifft. Damit bewirken sie eine Abkühlung in den darunter liegenden Schichten der Atmosphäre. Kein Wunder also, dass der Ausbruch des Pinatubo, einer der stärksten im vergangenen Jahrhundert, für Klimaforscher interessant ist.

© Grafik: GCO nach Michael Böttinger / DKRZ | Historischer Kühleffekt: Ulrike Niemeier hat berechnet, wie sich die Schwefeldioxidwolke, die nach dem Ausbruch des Yellowstone-Vulkans vor etwa zwei Millionen Jahren entstand, über die Erde verteilt haben dürfte. Demnach verhüllte sie nach elf Tagen ganz Nordamerika sowie Teile des Atlantiks, Pazifiks und Asiens.

„Dieser Vulkanausbruch hat eindrücklich gezeigt, dass der Eintrag von Schwefeldioxid in die Atmosphäre einen messbaren Effekt hat“, sagt Ulrike Niemeier, Meteorologin am Max-Planck-Institut für Meteorologie in Hamburg. Ulrike Niemeier widmet sich schon seit Jahren der Frage, wie das Schwefeldioxid und die Asche, die Vulkane ausstoßen, die Erdatmosphäre beeinflussen. Um die Klimawirkung besser zu verstehen, arbeitet sie vor allem mit Modellrechnungen. Dabei beschäftigt sie sich auch mit den großen vorgeschichtlichen Eruptionen, den Ausbrüchen sogenannter Supervulkane, die ein Vielfaches der Sprengkraft des Pinatubo hatten. Etwa die Eruptionen des Yellowstone-Vulkans vor rund zwei Millionen Jahren, bei denen rund 200-mal mehr Masse emporgeschleudert wurde als 1991 vom Pinatubo. Mithilfe von Computermodellen hat Ulrike Niemeier berechnet, wie sich diese gigantischen Mengen in der Atmosphäre verteilt haben könnten – wie sich die Erdatmosphäre dadurch abkühlte und letztlich das Weltklima änderte.

Der Kühleffekt des vulkanischen Schwefeldioxids hat dazu geführt, dass Ulrike Niemeier im Laufe der vergangenen 15 Jahre von ihrem eigentlichen Thema, der Rolle von Vulkanen im Klima, immer weiter in eine andere Richtung der Klimaforschung vorgedrungen ist. Denn seit sich die Erde durch den menschengemachten Klimawandel erwärmt, wird immer öfter die Frage laut, ob sich die Erde nicht vielleicht künstlich kühlen ließe. Einer der ersten, der diese Idee skizzierte, war der Atmosphärenchemiker Paul Crutzen, viele Jahre lang Direktor des Max-Planck-Instituts für Chemie in Mainz. Paul Crutzen veröffentlichte im Jahr 2006 einen provokanten Fachartikel. Angesichts der permanent wachsenden Kohlendioxid-Emissionen stellte er darin die Frage, ob die Menschheit künftig technisch in das Klima eingreifen müsse, um die schlimmsten Folgen des Klimawandels abzumildern. Für dieses Klempnern am Klima kam damals der Begriff Geo- beziehungsweise Climate-Engineering auf.

Unter dem Begriff Climate Engineering (CE) fassen Experten heute viele verschiedene technische Ansätze zusammen. Im Groben unterscheiden sie zwei Arten von gezielten Eingriffen ins Klima: Auf der einen Seite gibt es das Carbon Dioxide Removal (CDR) – die Kohlendioxid-Entfernung. Solche Methoden haben das Ziel, Kohlendioxid aus der Luft zu holen und das Gas für lange Zeit zu binden oder sicher zu verwahren. Die Aufforstung von riesigen bislang unbewaldeten Gebieten ist dafür ebenso im Gespräch wie die Düngung des Meeres mit Eisen, um das Algenwachstum anzukurbeln. „Am realistischsten und sinnvollsten erscheinen derzeit aber Anlagen, die das Kohlendioxid aus der Luft filtern oder aus dem Abgas von Kraftwerken und Industrie-Anlagen abtrennen“, sagt Ulrike Niemeier. Carbon Capture and Storage (CCS), Kohlenstoff-Abscheidung und -Speicherung wird diese Methode genannt. Die Niederländer arbeiten bereits daran, sie umzusetzen: Im Projekt Porthos soll im Hafen von Rotterdam in den kommenden Jahren eine Pipeline entlang der Raffinerien, Kraft- und Zementwerke verlegt werden, in die das Kohlendioxid aus den Abgasen eingespeist wird. Über die Pipeline wird das Kohlendioxid hinaus in die Nordsee in eine ausgediente Erdgaslagerstätte gepumpt.

Eine umstrittene Idee

Zur zweiten Climate-Engineering-Kategorie zählen Methoden, die direkt den Wärmehaushalt der Erde verändern – das sogenannte Strahlungsmanagement, das Solar Radiation Management (SRM). Eine besonders kühne Idee dieser Art sah vor, die Erde mit gewaltigen Sonnenschirmen im All abzuschatten – ein Plan, der bis heute eher als Science Fiction gilt. Es geht aber auch eine Nummer kleiner: So könnten beispielsweise Flugzeuge in der Atmosphäre Partikel verstreuen, die einen Teil der Sonnenstrahlung ins Weltall zurückwerfen. Doch Paul Crutzen sah sich für diese Idee einem Sturm der Entrüstung ausgesetzt. Es sei generell Hybris, den Strahlungshaushalt der Erde mit technischen Mitteln verändern zu wollen. Auch seien die Folgen für das Klima in den verschiedenen Regionen der Erde durch einen solchen massiven Eingriff unabsehbar. Das sieht auch Ulrike Niemeier nach vielen Jahren der Forschung so. „Während man mit CDR lediglich die Kohlendioxid-Konzentration in der Atmosphäre verringert, beeinflusst man mit dem Strahlungsmanagement weltweit die Menge an Sonnenergie, die auf die Erdoberfläche auftrifft.“

© GCO | mpg.de | Methoden des Geoengineerings | Zum Vergrößern anklicken!
Aerosole könnten die Erwärmung bremsen

Immerhin löste Paul Crutzens Artikel ein großes wissenschaftliches Interesse am Climate-Engineering aus. Als Expertinnen für die Simulation von Schwefelwolken aus Vulkaneruptionen und deren Klimawirkung waren auch Ulrike Niemeier und ihre Kollegin Claudia Timmreck gefragt. Damals hatten sie gerade ein einzigartiges Simulations-Werkzeug entwickelt, ein stratosphärisches Aerosolmodell, mit dem sich die Wirkung des Schwefeldioxids beziehungsweise der Sulfatpartikel in der Stratosphäre berechnen ließ. Mit Aerosolen werden wenige Nanometer bis mehrere Mikrometer kleine Partikel bezeichnet, die so leicht sind, dass sie – einmal aufgewirbelt – kaum mehr zu Boden sinken. Auch die Sulfatpartikel in der Stratosphäre zählen zu den Aerosolen. Ulrike Niemeier konnte mit ihrem Modell berechnen, wie schnell und effizient sich aus Schwefeldioxid kleine Sulfatpartikel bilden – und auch, wie schnell sie wieder verschwinden, weil sie nach und nach miteinander verklumpen und aus der Stratosphäre absinken.

Hier können Sie den Bericht weiterlesen

Quelle

MAX-PLANCK-GESELLSCHAFT 2021

Diese Meldung teilen

‹ Zurück zur Übersicht

Das könnte Sie auch interessieren