Wie entstand das erste arktische Ozonloch im Frühjahr 2011?
Ein internationales Wissenschaftlerteam hat enträtselt, wie im vergangenen Frühjahr das erste Ozonloch über der Arktis entstand. Die umfassende Analyse des ungewöhnlich hohen Ozonabbaus im März/April 2011 wurde jetzt vorab in der Online-Ausgabe des Fachmagazins „Nature“ veröffentlicht. „Das Ozonloch über der Arktis war nicht nur das Ergebnis einer Kombination vergangener Umweltbelastungen durch Luftschadstoffe, seine Entstehung hängt auch mit langfristigen Veränderungen im Klimasystem zusammen“, fasst Dr. Markus Rex, Potsdamer Atmosphärenphysiker am Alfred-Wegener-Institut für Polar- und Meeresforschung in der Helmholtz-Gemeinschaft, ein zentrales Ergebnis der Studie zusammen.
In 15 bis 25 Kilometer Höhe bildet das Spurengas Ozon eine natürliche Barriere gegen schädliche UV-Strahlung aus dem Weltraum. Unter dem Einfluss langlebiger Luftschadstoffe, die durch tiefe Temperaturen erst richtig aktiviert werden, kann die schützende Ozonschicht zum Ende des kalten polaren Winters in großem Umfang zerstört werden. Dabei löst die zurückkehrende Sonne eine Kette komplexer chemischer Reaktionen aus, die Ozon spalten. In der erheblich kälteren Antarktis führt dieser Prozess regelmäßig zur Bildung eines Ozonlochs im antarktischen Frühjahr.
Auch in der wärmeren Arktis gab es in der Vergangenheit in manchen Jahren Ozonverlust in erheblichem Umfang, ein regelrechtes Ozonloch hat sich dort jedoch bislang nicht bilden können. „Normalerweise ist die Arktis im Frühjahr von einer besonders dicken Ozonschicht geschützt und das Ausmaß des Ozonverlusts war bislang nicht schwerwiegend genug, um in diesem dicken Polster ein Loch zu erzeugen. Unsere Analyse zeigt nun, dass in diesem Frühjahr der Ozonverlust über der Arktis erstmalig ebenso schwerwiegend war wie in den frühen Ozonlöchern der Antarktis in der Mitte der 1980er Jahre“, erläutert Markus Rex.
Was war im vergangenen Frühjahr anders als in früheren arktischen Wintern?
In der Arktis bestimmen die Wetterbedingungen des jeweiligen Winters ganz entscheidend, wie weitreichend die Ozonschicht abgebaut wird, bevor sie sich im Sommer wieder regenerieren kann. Die Ozon zerstörenden Luftschadstoffe sind zwar inzwischen seit über einem Jahrzehnt verboten, in der Atmosphäre aber extrem langlebig. Ein wichtiger Aspekt der Studie konzentriert sich deshalb darauf, warum ausgerechnet in diesem Jahr erstmalig ein Ozonloch über der Arktis entstand – viele Jahre nach dem Verbot der entscheidenden Substanzen. Die Erklärung: „Im vergangenen Winter herrschten in der Stratosphäre 20 Kilometer über der Arktis antarktischere Verhältnisse als jemals seit Beginn der Beobachtungen Mitte der 1960er Jahre“, beschreibt der Potsdamer Atmosphärenphysiker die Ursache.
Zwei Bedingungen sind entscheidend für einen so dramatischen Ozonabbau, wie er im vergangenen Frühjahr zu beobachten war. Voraussetzung Nr. 1 sind ausgedehnte Bereiche in denen sich die Stratosphäre auf unter -78 Grad Celsius abkühlt. Dann können sich aus natürlich vorkommender Salpeter- und Schwefelsäure auch in der extrem trockenen Stratosphäre Wolken bilden – so genannte Polare Stratosphärische Wolken. Chemische Prozesse in diesen Wolken machen die Ozonzerstörung durch die bekannten menschengemachten Schadstoffe erst möglich. Und hier lag im vergangenen Winter ein wesentlicher Unterschied zu „normalen“ Jahren: „Im letzten Winter hatten wir praktisch durchgängig extrem tiefe Temperaturen in den oberen Luftschichten über der Arktis. Es gab wesentlich mehr Luftmassen, in denen es kalt genug zur Bildung dieser Wolken war, als wir es jemals seit Beginn der Beobachtungen in der Mitte der 1960er Jahre erlebt haben“, so Rex.
Voraussetzung Nr. 2 ist ein Luftwirbel über der Arktis, der bis in den April hinein stabil bleibt und die in ihm eingeschlossenen polaren Luftmassen von einem Austausch mit wärmeren Luftschichten aus dem Süden abschottet. Rex spricht in diesem Zusammenhang von einem „Kochtopf, in dem sich ein Ozonloch erst zusammenbrauen kann“. Dieses „Polarwirbel“ genannte Phänomen bildet sich in jedem Winter über beiden Polarregionen, ist aber in der Regel über der Arktis weniger stabil und bricht im Frühjahr erheblich früher zusammen als über der Antarktis. Große Kälte über der Arktis und ein stabiler Polarwirbel bedingen sich jedoch gegenseitig, und so ist es nicht überraschend, dass im arktischen Winter 2011 dieser Wirbel über der Arktis viel stabiler als sonst war. Der Wirbel blieb bis in die zweite Aprilhälfte hinein intakt, ermöglichte so die ungestörte Bildung des Ozonlochs und verhinderte das Nachströmen ozonreicherer Luft aus mittleren Breiten.
Anzeichen eines langfristigen Trends?
Die für die Arktis ungewöhnlich tiefen Temperaturen in der Stratosphäre sind dabei Teil eines langfristigen Trends. „Seit gut 40 Jahren werden die Temperaturen der arktischen Stratosphäre durch die Messungen eines internationalen Netzwerkes von Ballonsondierungsstationen erfasst“, erläutert Markus Rex. „Mit diesen Daten konnten wir nachweisen, dass in dieser Zeit kalte Winter, die in der Stratosphäre etwa einmal in fünf Jahren auftreten, immer kälter und die Anteile stratosphärischer Wolken am Polarwirbel immer größer geworden sind. Dieses Jahr scheinen wir in der Arktis dabei zum ersten Mal einen Wert erreicht zu haben, bei dem die vom Menschen verursachte Belastung mit ozonzerstörenden Substanzen zu einem Ozonloch führt.“ Die Bildung des Ozonlochs über der Nordhemisphäre wurde also erst durch diese langfristigen Klimaänderungen in der arktischen Atmosphäre ermöglicht. Der aufgrund der hohen Lebensdauern nur sehr langsame Rückgang der Schadstoffkonzentration in der Stratosphäre wird die Bildung von Ozonlöchern bei entsprechend tiefen Temperaturen noch bis in die zweite Hälfte des Jahrhunderts zulassen.
Quelle
Alfred-Wegener-Institut für Polar- und Meeresforschung 2011